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Abstract. Starting from the expression for the superdeterminant of (XI - M), where M is an 
arb- supermatrix, we propose a definition for the Mnesponding characteristic polynomial 
and we prove that each supermatrix satisfies its characteristic equation. Depending upon the 
factorization properties of the basic polynomials whose ratio defines the above mentioned 
superdeterminant we are able to construct polynomials of lower degree which are also shown 
to be annihilated by the supermahix. Some particular oses and examples are discussed. 

1. Introduction 

Given any n x n real mahix M, its characteristic polynomial is defined by P ( x )  = 
det(x1 - M), where I denotes the n x n identity matrix and x is a real variable. In , 

general P ( x )  = x" + ckxk is a monk polynomial of degree n. The Cayley-Hamilton 
theorem asserts that P ( x  = M) = 0. That is to say, if we substitute in P ( x )  the real 
variable x by the matrix M in all the powers xk(k # 0), and set xo = I, we obtain the 
matrix zero as the result. This is a powerful theorem in the sense that it produces n2 
null identities among the matrix elements. The coefficients ck(k # 0) can be written in 
terms of Tr(M), Tr(Mz). . . . , Tr(M"-') together with their powers and CO = det(M). This 
theorem has recently found interesting applications in (2 + I)-dimensional Chern-Simons 
(a) theories [l]. h e  cs theories are of topological nature and the fundamental degrees of 
freedom are the traces of group elements constructed as the holonomies (or Wilson lines, 
or integrated connections) of the gauge connection around oriented closed curves on the 
manifold. The observables are the expectation values of the Wilson lines which turned 
out to be realized as the various h o t  polynomials known to mathematicians [21. Since a 
theories are also exactly soluble and possess a finite number of degrees of freedom [3], 
another aspect of interest is the reduction of the initially inlinite-dimensional phase space to 
the subspace of the true degrees of freedom. The Cayley-Hamilton theorem has played an 
important role in the construction of the so called skein relations [4], which are relevant to 
the calculation of expectation values, and also in the process of reduction of the phase space. 
To illustrate the basic ideas related to this last point let us consider the simple case of two 
matrices M1 and Mz which belong to SL(2 ,  R). In this case the characteristic polynomial 
is P ( x )  = x2 - Tr(M1)x + 1 and we have the Cayley-Hamilton matrix identity 

(MI)' - Tr(Ml)M1 + I = 0. (1.1) 
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By multiplying (1.1) by M2M;' and tracing we  obtain the following relation among the 
traces 
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We recall also that for any SL(2, R) matrix we have Tr(M)  = Tr(M-l).  The expression 
(1.2) finds a very useful application in the discussion of the reduced phase space of the de 
Sitter gravity in 2 + 1 dimensions, which is equivalent to the ChernSimons theory of the 
group SO(2.2) [3]. This theory can be more easily described in terms of two copies of the 
group SL(2, X), which is the spinorial group of SO(2.2).  The gauge invariant degrees of 
freedom associated to one genus of an arbitrary genus g two-dimensional surface turn out to 
be traces of any product of powers of two SL(2, R) matrices M I  and Mz, which correspond 
to the holonomies (or integrated connections) of the two homotopically distinct trajectories 
on one genus. Nevertheless, because Chern-Simons theories have a finite number of degrees 
of freedom, one should be able to reduce this infinite set of traces to a finite one. This 
task can in fact be accomplished by virtue of the relation (1.2). In other words, the trace 
Tr(MlPLM2*LM1P-M2Qz.. . M1"MzQ" . . .), for any pi, qi in Z, can be shown to be reducible 
and to be expressed as a function of three traces only: Tr(Ml) ,  Tr(Mz) and Tr(MtM2) [51. 
A simple case of such reduction is to consider Tr(MfM2) for example. Here we apply the 
relation (1.2) with M1 + M I  and MZ + M I M Z  obtaining 

Tr(M:M2) = Tr(M1) Tr(M1Mz) - Tr(Mz) .  (1.3) 

A similar reduction can be performed in the case of 2 + 1 super de Sitter gravity, 
which is the Chern-Simons theory of the supergroup Osp(112, C) 161. The novelty here is 
that one is dealing with supermatrices instead of ordinary matrices. In the particular case 
considered, a Cayley-Hamilton identity for the supermatrices was obtained in an heuristical 
way and a relation analogous to (1.2) was derived. This allowed to carry out the reduction 
of the infinitedimensional phase space, this time in terms of five complex supertraces [7]. 
We observe that the nonlinear constraints among the traces that need to be solved in order 
to accomplish the reduction of the phase space, of which (1.2) is an example, are usually 
obtained using the so called Mandelstam identities [8]. The discussion of the relation among 
these two alternatives together with the construction of the latter identities in the case of 
supermatrices is reported in [9]. 

In this paper we discuss the general construction of Cayley-Hamilton type identities for 
supermatrices. This is an interesting problem in its own, besides the possible applications 
in the study of the reduced space in Chem-Simons theories defined over a supergroup. In 
section 2 we introduce our notation together with a number of results which will be useful 
for our purposes. In this section we also propose a definition of the characteristic and 
null polynomials for supermatrices starting from the corresponding superdeterminant. In 
section 3 we prove the Cayley-Hamilton theorem for the polynomials previously defined, 
by inwoducing the analogue of the adjoint for supermatrices. The main results contained in 
sections 2 and 3 have been already reported as a letter [IO]. They are included here to make 
this paper self-contained and also to allow for a more detailed and precise presentation. 
Section 4 contains a discussion of some interesting cases together with many specific 
examples. Finally, in section 5 we give a short summary of this work emphasizing those 
points, that in our opinion, require further developement. There is also one appendix where 
some useful results are collected. 
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2. The characteristic and null polynomials for supermatrices 

We consider a Grassmann algebra A over the complex numbers C, following the notation 
stated in the appendix. 

A ( p  + q)  x (p + q) supermatrix is a block matrix of the form 

where A, B ,  C and D are p x p ,  p x q ,  q x p .  q x q matrices respectively. The 
distinguishing feature with respect to an ordinaty matrix is that the matrix elements 
MRS,  R = (i, a), S = ( j ,  @) are elements of A with the property that Aij (i, j = 1, . . . p) 
and Dap (a, @ = 1, . . .4) are even elements, while Bi, and Cpj are odd elements of the 
algebra. In particular this means that such numbers satisfy 

BiaBjp = -B,pBia C,iCpj -CpjCai BiuCpj -CpjBia (2.2) 

while Aij and De@ commute with everything. 
Let us recall that the ordinary mahix addition and the ordinary matrix product of two 

supermatrices is again a supermatrix. Nevertheless, such concepts as the trace and the 
determinant need to be redefined, because of the odd component piece of the supermatrix. 

The basic invariant under similarity transformations for supermatrices is the supertrace, 
defined by 

Str (M)= Tr(A) - Tr(D) (2.3) 

where the trace over the even matrices is the standard one. An important property of the 
above definition is the cyclic identity Str(M1Mz) = Str(MzMl), for arbitrary supermatrices, 
which is just a consequence of the relative minus sign in (2.3). The generalization of the 
determinant, called the superdeterminant, is obtained from (2.3) by defining 

Gln(SdetM) = Str(M-'SM) (2.4) 

with appropriate boundary conditions. In this compact notation we are summarizing the 
(p +q)' relations which give the partial derivatives of the function In(SdetM) with respect 
to the entries MRS of the supermatrix, in terms of the elements of the inverse supermatrix 
M - l .  For example, aln(sdetM)/aMij = (M-') j i  for the even indices i, j .  These first 
order partial differential equations are subsequently integrated under the boundary conditions 
SdetZ = 1, where I is the unit supermatrix, to produce the following equivalent two forms 
of calculating the superdeterminant [ll] 

detA - - det(A - BD-'C) 
Sdet(M) = 

detD det(D - CA-'B) ' 

All the matrices involved now are even in the Grassmann algebra and det has its usual 
meaning. The superdeterminant inherits the basic property Sdet(M1MZ) = Sdet(MzMI) 
and requires detD # 0 and detA # 0 in order to be defined. An explicit demonstration of 
the equality of the two alternative ways of calculating Sdet(M) is given in [12]. 

In order to proceed we introduce a(x) = det(xZ - A) and d(x)  = det(xZ - D), which 
are the characteristic polynomials of the even matrices A and D .  

Starting from the two altematives (2.5) of calculating the superdeterminant we find it 
convenient to state the following: 
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Lemma 2.1. For any ( p  + q) x ( p  + q) supermatrix M, the characteristic function 
h(x)  = Sdet(xZ - M) can be written as 

where the basic polynomials p ,  6, F and G are given by 

P ( x )  = det(d(x)(xZ - A) - Badj(xZ - D)C)  (2.7a) 

F(x)  = (U(X))~+ '  (2.7b) 

Proof. The above expressions are obtained from (25) using the relation (xZ - Q)-' = 
[det(xZ - Q)l-'adj(xZ - Q )  valid for any even matrix Q. Notice that is expressed in 
terms of the determinant of a p x p even matrix, while G(x) is the determinant of a q x q 
even matrix. 

In order to motivate the basic idea of our definition for the characteristic polynomial 
of a supermatrix let us consider the simple case of a block-diagonal supermatrix M (i.e. 
B = 0, C = 0). Here h(x) = a(x) /d(x)  and clearly the characteristic polynomial is 
P ( x )  = a(x)d(x), which is the product of the numerator and the denominator of the 
corresponding superdeterminant. In fact we have 

8 ( x )  = (d(x))P+' 

G(x) = det(a(x)(xZ - D) - Cadj(x1 - A ) @ .  

because a(A) = O,d(D) = 0. In the general case where h(x)  is given by (2.6), the 
numerator of the superdeterminant is b ( F )  while the denominator is 6 (G), which motivates 
the following: 

Definition 2.1. 
polynomial 

For an arbitrary ( p + q )  x (pfq) supermatrix M we define the characteristic 

P(x) = P(x)G(x)  = F ( X ) B ( X )  (2.9) 

where the basic polynomials P, 8, F, and G are given in (2.7). 
The fact that we choose to define P(x) in this manner instead of either P(x) = 

F ( x ) 6 ( x )  or P(x)  = F(x)C(x)  can only be justified a posteriori. Using (2.7) we 
obtain that P(x)  = a ( ~ ) ~ ~ ~ d ( x ) p ~ ' .  For notational simplicity we will not necessarily write 
explicitly the x-dependence on many of the polynomials considered in the sequel. 

In the block-diagonal case where a(x) and d(x) have a common factor f ( x )  

= f(x)a~(x) d(x) = ftx)dl(x) (2.10) 

the characteristic polynomial is given by P ( x )  = f(x)al(x)d,(x), which is a polynomial of 
lower degree than the product n(x)d(x). Motivated by this fact together with the work of 
[13], we have realized that there are some cases in which we can construct null polynomials 
of lower degree than P(x) ,  according to the factorization properties of the basic polynomials 
E, 8, F, G. At this point it is important to observe that we do not have a unique factorization 
theorem for polynomials defined over a Grassmann algebra. ,This can be seen, for example, 
from the identity xz = (x  + a ) ( x  - a), where (Y is an even Grassmann with a* = 0. The 
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construction of such null polynomials of lower degree starts from finding the divisors of 
maximum degree of the pairs P, 8, ( F ,  G )  which we denote by R ( S )  respectively. This 
means that one is able to write 

where all polynomials are monic and also f, Q, f, g are of least degree by construction. 
They must satisfy 

because of (2.6) and the expressions in (2.11) might be not unique. Let us observe 
that in the case of polynomials over the complex numbers (2.12) would imply at most 
f = Af, 2 = Ag with A being a constant. Since. we are considering polynomials over a 
Grassmann algebra this is not necessarily true as can be seen again in the above mentioned 
identity x / ( x  -a) = (x  +&)I& which we have rewritten in a convenient way. The above 
discussion leads us to the following: 

Definition 2.2. Given an arbitrary ( p  + q )  x ( p  + q)  supermatrix M, with a characteristic 
function h(x)  such that P, 6 have a common factor R(R = Rf, 6 = Ri) and F, G have 
a common factor S ( F  = Sf, G = Sg), we define a null polynomial of M by 

(2.13) 
The above  polynomial^ is clearly of lower degree than P(x),  which is just a particular 

case of the null polynomial (2.13) when R = S = 1. We will concentrate mostly on 
definition 2.2 in the sequel. 

k = R f  6 = R i  F = S f  G = S g  (2.11) 

f l i  = f i g  (2.12) 

P ( X )  = f ( X k ( X )  = f ( X ) % ( X ) .  
I ,  

3. The Cayley-Hamilton theom for supermatrices 

Part of our strategy to prove such a theorem for the polynomial introduced in definition 2.2 
is based on one of the standard methods to prove the Cayley-Hamilton theorem for ordinary 
matrices [14]. We briefiy recall such a procedure and emphasize. that it is independent of 
the matrix considered being a standard matrix or a supermatrix. 

Lemma 3.1. Let M, (XI  - M) and N ( x )  be ( p  + q)  x ( p  + q )  supermatrices where 
M is independent of x E Ao, with N ( x )  being a polynomial supermatrix of degree 
(n - I),  N ( x )  = N&-' + NIX"-' + . . . + N.-lxo, (where each Nk(k = 0, . . . , n - 1) 
is a ( p  + q )  x ( p  + q )  supermatrix independent of x )  such that 

where P ( x )  = pox" + PIX"-' + . . . + pnxo is a numerical polynomial of degree n over AB, 
then P(M) = poM" + . . . + p,I = 0. 

Proof. The proof follows by comparing the independent powers of x in (3.1) and then 
explicitly computing P(M) 1141. 

In the standard case the matrix N ( x )  is just given by N ( x )  = adj(xI - M) = 
det(x1 - M ) ( x 1  - M)-', and P ( x )  = det(xl - M). In the case of a supermatrix we 
do not have an obvious generalization either of the polynomial matrix adj(xZ - M) or of 
det(x1 - M). Nevertheless, following the analogy as closely as possible we define 

(3.2) 
where P ( x )  is the polynomial introduced in definition 2.2 of the previous section. The 
challenge now is to prove that N ( x ) ,  which trivially satisfies (3.1), is indeed a polynomial 
matrix. In this way we would have proved that P(M) = 0, according to lemma 3.1. 

(xr  - M ) N ( X )  = p ( x ) r  (3.1) 

N ( x )  = P ( x ) ( x l  - M)-' 
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Lemma 3.2. Let M and (xZ - M) be ( p  + q) x ( p  + q) supermatrices, x E Ao, then 

(3.3a) 

(3.3b) 

where Aji, Bj., Caj and 0.p are the entries of the supermatrix M defined in (2.1) and 
p, G, are the polynomials given in (2.7). The derivative with respect to an odd Grassmann 
number is a left derivative defined such that 8p = 8BjaaF/aBj,,. 

Proof. The first step is to calculate ( x 1 -  M)-' in block form, with the results 

(xZ - M);' = ( ( ~ l  - A) - B(xZ - D)-'C)-' 

(xZ - M)&' = -(xZ - D)-'C((xZ - A )  - B(xZ - D)-'C)-' 

(3.4u) 
(3.46) 

( 3 . k )  

(3.4d) 

where the subindices 11, 12,21 and 22 denote the corresponding p x p .  p x q, q x p ,  and 
q x q blocks respectively. Let us concentrate now in the 11 block. Rewritting all the inverse 
matrices in (3 .4~)  in terms of their adjoints together with the corresponding determinants 
we obtain 

(XI -M)z = -(xZ - A)-'B((xZ - D) - C(xZ - A)-'B)-' 

(XZ - ~ ) ; l  = ((XZ - 0) - c(xr - A)-~B)-'  

(xZ - M);' = $adj((xZ - A)d - Badj(xZ - D)C). (3.5) 
F 

Using the basic property 

8detQ = Tr(adjQ8Q) 

valid for any even matrix Q, we calculate the change of r? with respect to Aij, keeping 
constant all other entries, obtaining 

8r? = -d[adj((xZ - A)d - Badj(xZ - D)C)lijSAji (3.7) 

which can be written as 

= -d[adj(xl - A)d - Badj(xZ - 0)C)ltj. (3.8) 

The comparison of (3.8) with (3.5) completes the proof of the first relation in (3 .34 .  The 
corresponding proof for the remaining equations (3.3) is performed following a similar 
procedure. 

Notice that the conditions for the existence of (XI - M)-' are the same as those for the 
existence of Sdet(x1- M) and they are det(xl - A )  # 0 and det(xZ - D) # 0. Since x is 
a generic even Grassmann variable we will assume that this is always the case. By virtue 
of these assumptions the term ((xZ - A) - B(x1 - D)-lC)-' ,  for example, can always 
be calculated as (I - ( x l  - A)-'B(xI - D)- l )C)- l (xI  - A)-'. The factor on the left 
can be thought of as a series expansion of the form 1/(1 - z )  = 1 + z + z2 + . . ., with 
z = (xZ - A)-'B(xZ - D)-'C. Moreover, the series will stop at some power because z is 
a matrix with body zero and thus is nilpotent. 

Now we come to the principal result of this paper, which we state as the following: 

aF 
aAji 
- 
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Theorem 3.1: Let M and ( x 1  - M) be ( p  + q )  x ( p  + q )  supermatrices, x E Ao, then 
N(x) = P(x)(xZ - M)-', with P ( x )  given in definition 2.2, is a polynomial matrix. 

Proof. Let us consider the block-element 11 of N(x) to begin with. 
lemma 3.2 together with (2.11), this block can be written as 

According to 

(3.9) 

The first term of the RHS is clearly of polynomial character. In order to transform the second 
term we make use of the property 

(3.10) 

which follows from the factorization 6 = Ri ,  together with the fact that 6 is just a function 
of D-p, according to (2.7~). In this way and also using (2.12), we obtain 

(3.11) 

which leads to the conclusion that the block-matrix N;j is indeed polynomial. The proof for 
N,i runs along the same lines, except that now the derivatives are taken with respect to Bi, 
and that we have to use alnc?/aBji, = 0, instead of (3.10). The remaining terms Nta and 
Nm$ can be dealt with in an analogous manner by considering the derivatives of G = Sg 
with respect to Cat and Dgu. and by replacing the condition (3.10) by alnF/aCUi = 0 and 
alnF/aDg, = 0 respectively. The results are again of the form (3.11), the only difference 
being the variables with respect to which the derivatives are taken. 

Finally, ,using theorem (3.1) together with lemma (3.1) we can state the following 
extension of the Cayley-Hamilton theorem for supermatrices: 

Theorem 3.2. Let M and (xZ - M )  be ( p  + q )  x ( p  + q )  supermatrices, .x E Ao, with 
Sdet(xI - M )  = k/c? = F / G ,  where the polynomials j, 6, F .and G are given in 
(2.7). Then, for any common factor R such that j = Rf, 6 = Rg and S such that 
F = Sf,G = Sg, where f/f = f/g, the polynomial P ( x )  = f ( x ) g ( x )  = f ( x ) f ( x )  
annihilates M, i.e. P(M) = 0. 

4. Parlicular cases and specific examples 

In this section we consider some distinguished cases and some particular examples of null 
polynomials of minimum degree for supermatrices, constructed according to the definitions 
given in section 2. Our general procedure for constructing such null polynomials is based 
on the factorizaton properties of the polynomials P, 6 ,  F and G introduced in section 2. 
The work of [13] shows that these factorization properties are closely related to those of the 
characteristic polynomials a(x) and d(x )  corresponding to the even blocks of the supematrix. 
At this point we emphasize that when dealing with polynomials over a Grassmann algebra, 
the existence of a maximum common divisor of two polynomials is not in one-to-one 
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corresponence with the fact that these polynomials are not co-prime. In fact, we will 
exhihit a simple example of two polynomials which are not co-prime and nevertheless do 
not have a common factor. In this section we will shift the emphasis to the factorization 
properties of a(x) and d(x) and we will consider three cases: (1) the polynomials a and 
d are co-prime, (2) the polynomials U and d are not co-prime but do not have a common 
factor and finally (3) both polynomials are not co-prime and have a maximum common 
divisor, 

4.1. The polynomials a(x)  md d(x )  are co-prime 

This case has been thoroughly discussed in 1131 in relation with the factorization properties 
of h(x). Theorem (3.9) of this reference proves that the characteristic function h can be 
written in the unique irreducible form 

L F Urrutia md N Morales 

h(x)  = (a + r)/(d +t) (4.1) 

where r and t are even polynomials with body zero which have the property deg(r) < deg(u) 
and deg(t) < deg(d). The two basic steps that lead to (4.1) are, in the first place, the 
possibility of writing 

k = a d P + u  G = a 4 d + v  (4.2) 

@ = (U + r)(dP + t') 
together with the factorization 

(4.34 

(4.3b) 

where all polynomials U, U, r, r', t ,  t' have body zero and deg(u) < p(4 + l), deg(u) c 
4(p + l), deg(t') < p 4 ,  deg(r) < p ,  deg(r') c p4, deg(t) < q. The expressions (4.2) 
are just the expansions of the corresponding polynomials in (2.7) in terms of powers of 
the odd Grassmann numbers Bi, and C,j, while the expressions (4.3~) and (4.3b) are a 
consequence of corollary (3.8) of [13], which we have included in the appendix for further 
use. The second step arises from comparing the two ways (2.6) of writing h(x)  and using 
the factorization lemma 3.4 of [13], also included in the appendix. In this way one obtains 
that 

G = (d + t ) (d  + r') 

(4.44 

(4.4b) 

The use of (4.3) and (4.4) in any expression (2.6) leads directly to the form (4.1) for h(x).  
Our result, in the case where a(x) and d(x )  are co-prime, is the following expression for 
the null polynomial of minimum degree 

P ( x ) = ( a + r ) ( d + t )  - (4.5) 

according to theorem (3.2). Besides giving all these existence theorems, we can find in [I31 
what the authors call a modified Euclidean algorithm, which in fact allows us to explicitly 
perform the reduction in (2.6) thus obtaining the irreducible expressions appearing in (4.1). 
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4.1.1. ( Z + l )  x ( 1 4 )  supermatrices. This is the simplest example of the case (4.1) and 
corresponds to the choice 

M = ( P  8 4  "> (4.6) 

with p # 
to lemma 3.3 of [13]. The bar over a number denotes its body. Here we have 

in such a way that a = x - p and d = x -4 be co-prime polynomials, according 

2 P = (x  - q ) ( x  - p )  - ffp ~ 6 = (x  - 4) 

F = ( X  - p)' C = (x  - q ) ( x  - p )  +cup. 
(4.7) 

The modified Euclidean algorithm of [131 applied to each pair p ,  e ( F ,  G) leads to 
the following factorizations , .  

F =  x - P + -  - ( 4 - P  

- ( 4 - P  
c= x - q + -  

(4.8) 

which allow the identifications r = -t' = t = -r' = c@us/(q - p ) ,  sinck these polynomials 
are of degree zero in this F e .  Here we have R = (x  - q - cu,5'/(q - p ) ) ,  S = ( x  - p - 
ap/(q - p ) )  together with f = f = x - p + u p / ( q  - p )  and g = 2 = x - 4  +olg/(q - p )  
in the notation of section 2. The null polynomial of minimum degree is then [lo, 151 

(4.9) (4 + P ) f f 8  P ( x ) = f g = x  - x  p + q - -  ( 4 - P  hp ) + p q  - (q--p) 
where we can verify by direct substitution that P ( M )  = 0. 

4.1.2. Osp(112; C) supemtrices.  Another example of this kind corresponds to the case of 
supermatrices belonging to the supergroup Osp(112; C), which are relevant to the discussion 
of the reduced phase space in super de Sitter gravity in 2 + 1 dimensions [6, 71. Here we 
consider (2 + 1) x (2 + 1) supermatrices so that the factorization properties involved are a 
particular case of the example presented in [13]. 

The supermatrices M belonging to Osp(112; C) are such that 

0 1 0  
M'HM = H H = ( - I  0 0) (4.10) 

\ o  o I /  
where T denotes the supertransposed and H the orthosymplectic supermatrix. The above 
supermatrices can be parameterized in the following way 

(4.11) 
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with X I ,  xp being arbitrary odd Grassmann numbers and t denoting the standard transposition. 
The condition (4.10) translates into the following constraints over the remaining matrix 
elements 

q ' = e ' E A  a = l + x l x z  detA=l-xlx;! (4.12) 

where E denotes the 2 x 2 antisymmetric block of H in (4.10). We assume Tr(A) # 2 in 
order that a and d be co-prime polynomials. In the notation of [13], the unique irreducible 
expression for the characteristic function is 

h = (2 + UIX + U Z ) / ( X  + 9) (4.13) 

where the expressions for ui(i = , I ,  2,3) are obtained there by applying the modified 
Euclidean algorithm and are given in explicit form. Substituting our particular values for 
the supermatrix elements we obtain 

~ l = - l - S t r M  U Z = - U ~ = ~  (4.14) 

in such a way that the null polynomial of minimum degree, given by the product 
(xz + U ~ X  + U& + os), is 171 

P(x )  = x3 - (Z+StrM)(xZ - x )  - 1. (4.15) 

4.2. The polynomials a(x) and d(x )  are not CO-prime and do not have a common factor 

An example of this kind is provided by the (1 + 1) x (1 + 1) supermahix 

M=(: :) (4.16) 

where U is an even element of the Grassmann algebra such that B = 0 and up = 0. In 
this case our procedure will produce a family of null polynomials. Here, a = x - U and 
d = x which are not co-prime polynomials according to the definition of [13], because the 
ideal generated by a and d is not the whole ring of even polynomials over the Grassmann 
algebra. In particular, it is not possible to find polynomials P, Q such that 1 = Pa + Qd. 
The basic reason for this is the impossibility of dividing by U. Again, we emphasize the 
unintuitive fact that even though a and d are not CO-prime polynomials, they do not possess 
a common factor. The basic polynomials are 

F = x(x  -U) C? = xZ G = X ( X  - U) (4.17) 

and we need to consider the corresponding factorization propelties. It is obvious, for 
example, that and e have x as a common factor. Surprisingly; this result can not be 
obtained by applying the Euclidean algorithm (or the modified Euclidean algorithm) to k 
and e. The problem is that the first reminder has body zero, so that we cannot go on to 
the second step which requires dividing by this remainder. Besides, the non-existence of a 
unique factorization theorem is clearly shown here in the identity x 2  = (x  +.zu)(x - zu), 
with z being an arbitrary complex number. Choosing z =. 1 leads to the conclusion that 
k and 6 have two common factors of maximum degree which are x and ( x  - U). The 

- 
F = (x  - 0 ) Z  = xz  -2xu 
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same happens with F and G. Thus; after each cancellation is made, we are left with four 
possible combinations of the reduced ratios 

(4.18) 

where - fi = x - U  ~ f 2 = x  f c = x - u  ' f z = x - 2 0  

& = x  & = x + u  g , = x  g z = x - u .  
(4.19) 

For each possibility one can verify that (4.18) is indeed correct. According to theorem (3.2) 
we obtain four null polynomials given by Pij(x) = j g j .  They are 

(4.20) P,1 = x - u x  

Since any linear combination of the above polynomials will be also annihilated by the 
supermatrix, we f i d y  obtain two basic null polynomials which are 

2 PI2 = x2 - 2ux P21 = X Z  P22 = x2 - a x .  

PI = x  q = u x .  (4.21) 

4.3. The polynomials a(x) and d ( x )  are not co-prime and have a common factor 
Here we consider the case where a(x) a n d ~ d ( x )  have a maximum common divisor k(x ) .  
That is to say we write 

U ( X )  = k(x)al ( x )  d(X) = k(x)dl ( x )  (4.22) 

where al(x) and d ,  ( x )  are co-prime polynomials. We discuss the following two cases: (1) 
k and a1 together with k and dl are co-prime polynomials and (2) k is not co-prime with 
a1 andlor d, . Each of the polynomials that we have intraduced is monic. This constitutes 
an extension of the discussion in 1131 and the next step is to consider the new factorization 
properties of the polynomials E ,  6, F;  G.' 

4.3.1. The polynomial k(x) is co-prime with~ar(x) and d, (x) .  We begin by writing 

= (kAdf-'al + Y) 6 = kAdf F = k a, G = (kBa,B-'4 + 2) (4.23) 

where Y and Z are polynomials with body zero and A = p + 1, B = q + 1. Using the 
factorization lemma 3.6 of [13] with respect to each of the prime polynomials involved we 
can Write f and G in the following way 

E = (kA + Yl)(d;'-' + Yz)(al + Y3) (4.24) 

where Yi, Zi, i = 1,2,3 are body-zero polynomials. Using lemma 3.4 of [13] together with 
the fact that k, d l ,  and a, are co-prime in pairs,  we can show that the above factorization 
is unique. The condition fG = F 6  and another use of lemma 3.4 leads to the following 
identities 

G = (kB + Zi)(a;-' + Zz) (d~  + Z3) 

kAtB ( k A  + Yi) (kE + Zi) 
d;' = (df-'  + Yz)(di + Z3) 

a," = (ay1 + z 2 ) h  + Y3) 

(4.25a) 

(4.256) 

(4.25~) 
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In this way we can identify the basic factorizations (2.11) by writing 

R = ( d f '  + Yz) S = (U,"-' + 22) f = (kA + Yi)(al + Y3) 
(4.26) 

f = kB(al + Y3) 2 = kA(dl + 2 3 )  g = (kB + Zl)(dl+ Z3) .  

Let us observe that the relation fg = fi is immediately realized by virtue of (4.25~). 
Following the general procedure and modulo accidental cancellations that could occur in 
(kA + Y1) /kA or kB/ (kB + Z l )  for example, we identify 

p(x) = kA+B(al + &)(dl + 23) (4.27) 

as the null polynomial of minimum degree in this case. 

supermatrix 
A simple specific example of the above case is provided by the following (2+2) x (2+2) 

(4.28) 

where ( ~ 1 ,  (12 are odd Grassmann numbers and we define U = crlaz, such that u2 = u a ~  = 
m a z  = 0. Here A = B = 3. The basic characteristic polynomials are a ( x )  = x(x  - 1) and 
d ( x )  = x(x  + 1) so that we identify 

k = x  a l = x - l  d i = ~ + l  (4.29) 

which are indeed co-prime in pairs. The basic polynomials are 

P = x3(x + i ) ~ ( ~  - 1) + u x ( x  + I) 
E = x 3 ( x  + 1 ) 3  

F = x3(x - 113 

G = x3(x - l)Z(x + 1) - u x ( x  - 1). 
(4.30) 

The induced factorization properties (4.25) are 

from where we can read off the values for Y;, Zi. This, together with (4.24) and (4.30), 
allows to verify the factorization properties of k, E ,  F, G. In this particular example we 
have accidental cancellations in such a way that 

R = X ( X  + l ) ( ~  + 1 - ~ / 2 )  S = X ( X  - I)(X - 1 +u/Z) (4.32) 

each of which differs from the corresponding expression in (4.26) by an extra factor of x. 
The null polynomial of minimum degree is then 

P ( x )  = x6 + ux5 - x4 (4.33) 

which is of degree six instead of eight, due to the above mentioned accidental cancellations. 
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4.3.2. The polynomial k(x)  is not co-prime with a l ( x )  m a o r  dr(x).  We can extend the 
previous case (4.3.1) by writing the maximum common divisor k ( x )  as 

k ( x )  = kok.kd (4.34) 

which explicitly displays the further factorization properties involved according to the 
following procedure. Once k has been identified, it is written as the product of its mini"  
degee factors, which are subsequently rearranged according to the following convention: 
those having a common factor with ul(d1) but not with di(ul) are called k,(kd) respectively 
while all the remaining factors are included in h. We further demand that ko, kaul and kdd1 
be co-prime in pairs. The previous case corresponded to k, = kd = 1. Again, we start from 
the expressions (4.23) where k is substituted by (4.34) and we look for the factorization 
properties analogous to (4.24). Here one must be careful enough in keeping together any 
product of powers of k. and a1 or kd and d1, because the members of each pair are not 
respectively co-prime. In this way we obtain 

8 = (g + fi)(k,Ad:-' + fz)(k,Aai + Y3) G = (k: + Zi)(kfu;- '  + Zz)(k,Bdi + 33)  

(4.35) 

where E ,  2, , i = 1,2,3 are body zero polynomials. Using the identity FG = F 8  together 
with lemma (3.4) of [13] we extend the factorization properties (4.25) to 

(4.36~) 

(4.36b) 

(4.36~) 

This time we are not able to directly write F, 8, F, G in the way prkcflbed by (2.11). 
Instead we can only arrive at the following general expressions 

P = T A  6 = T W k a / k d  A B  F = U f i k f l k , "  G = Ug1 a g i  = f& 

(4.37) 

where 

The equations (4.38) are the generalizations of (4.26) and we verify that fig1 = f i i l  is 
satisfied in virtue of (4.36~). Two r e m b  are now in order: (i) the form (4.37) of witting 
F and 8 is rather unpleasant because it does not clearly exhibit the polynomial character of 
these functions. Nevertheless we know that the products T &  and U f i  can be divided by kf  
and k," respectively according to the factorization equations (4.366) and (4.36~); (ii) the fact 
that we are not able to write 8, 8,  F, G in the form of (2.11) means only that the method 
employed does not allow the general identification of a maximum common divisor in each 
case, as it happened previously. Nevertheless, the form (4.37) for the basic polynomials 
can still be used to construct a null polynomial according to the ideas of section 3. The 
definition of the null polynomial in this case is 

p & )  = kakdfigi  (4.39) 
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and the proof that P ( M )  = 0 follows exactly the same steps as in theorem 3.2, with the only 
difference that the matrix N ( x )  = P(x) (x l -M)- '  is constructed with the above P ( x ) .  Let 
us remind the reader that we only need to prove that N(x) is a polynomial supermatrix. Let 
us consider the 11 block of the supermatrix N ( x ) .  Using lemma 3.2 together with (4.39) 
and the expression for 
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in (4.37) we can write 

(4.40) 

The first term of the RHS is clearly of polynomial character. In order to transform the second 
term we make use of the property 

ainT a iGl  alnk. alnkd _- -I)=- +- + ( p  + 1)- - (q + 1)- a1nG 
aAjt aAji  aAji  aAji aAji 

(4.41) 

which follows from the factorization (4.37) of G, together with the fact that is just a 
function of De#, according to (2.7~). In this way and using the last relation (4.37) we 
obtain 

which leads to the conclusion that the block-matrix Nij is indeed polynomial. The proof 
for the remaining blocks of N(x) follows along similar arguments. The final conclusion is 
that N ( x )  is indeed polynomial thus leading to P(M) = 0. 

Finally we present an specific example of the previous case. Let us consider the 
(2  + 2) x (2 + 2) supermatrix 

(4.43) 

with U = LYILYZ as previously introduced. Now we have a(x) = x(x  - 1) and d(x )  = x2, 
with A = B 5 3. The maximum common divisor is k = x and om conventions to denote 
the factors of k leads to 

ko = k, = 1 kd=X a l = x - l  d i = x .  (4.44) 

The basic polynomials are 

3 = x~(x-ij-ux3 F = x 3 ( X -  113 r; = x6 G = x 4 ( x - i ) z + ~ ~ z ( x - i ) .  
(4.45) 

In this case, the factorization (4.36a) does not occur and the remaining ones are 

x9 = ( x ~ + u x ~ ( ~ +  i))(x4-ux2(x+ 1)) (x  - 9 3  = (cX - l ) 2 + u ( x -  I ) ) ( ~  - 1 
(4.46) 
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which correspond to (4.36b) and (4.36~) respectively. From these expressions we can read 
off the polynomials ?2, ?3, 22, 25 and verify the factorizations (4.35) for F and G with 
the understanding that ( k t  + TI) and (k[ + 2,) should be replaced by one. Going back to 
(4.38) we find 

T = x 3 ( x 2  +u(x  + 1)) 

j = f1 = x - 1 - U  

u = (x  - i x X  - 1 

51 = g1 = x 2 ( 2  - u ( x  + 1)) 

and the null polynomial (4.39) is given by 

(4.47) 

P ( ~ )  = x6 - 2 ( 1 +  w + &. (4.48) 

It is interesting to observe that accidental cancellations which occur in this case, that 
we are not able to describe in general, allow us to rewrite the expressions (4.37) exactly in 
the form (2.11), (2.12) with the following identifications 

R = x2(xZ+u(x+  1)) 

f= f = x(x - 1 -u) 

s = X * ( X  - l)(x - 1 +U) 

J = g = x* - u(x -I- 1). 
(4.49) 

In this way we can find another null polynomial of degree lower than (4.48), which is 
given by 

(4.50) 

The simple form of the supermatrix (4.43) permits a direct verification that PI ( M )  = 0. 

3 Pl(X) = fg  = x4 - (1 + 2u)x + ux . 

5. Summary 

Given an arbitrary supermatrix M and starting from Sdet(xl - M), which is naturally 
written as a ratio of polynomials, according to (2.6) and (2.7). we have introduced two 
types of null polynomials in definitions 2.1 and 2.2. We have also proved that each of 
them is annihilated by M, thus providing an extension of the Cayley-Hamilton theorem for 
supermatrices in theorem 3.2. At the level of some particular cases we have also extended 
some results of [ 131 by giving a constructive procedure to produce the required factorizations 
needed to construct what we have called null polynomials of minimum degree, for the case 
where a(x) and d ( x )  have a common factor. 

In order to put our work in the right perspective and to suggest some possible lines 
of further research, we now make a few comments. We have called 'characteristic' the 
polynomial P(x) introduced in definition (2.1), because it is the one that can be directly 
associated with an arbitrary supermatrix, independently of the factorization properties of 
the numerator and denominator of Sdet (XI - M). Nevertheless, this polynomial carries 
very little information regarding the odd blocks of M and so far we have not studied to 
what extent it really characterizes the supermatrix. Our guess is that the null polynomials of 
minimum degree, given in definition 2.2 and emphasized in the examples, will be much more 
effective in this respect. Nevertheless, we are still lacking a completely general procedure 
or classification to determine when there would exist a maximum common divisor of the 
polynomials F and 6 (F and G) that are the building blocks of Sdet(xZ - M). Since these 
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minimum degree polynomials are not necessarily unique, we should also provide a criterion 
for selecting as many of them in order to completely characterize the supermatrix. One 
of the main points that should be clarified from an operational point of view when hying 
to answer the above questions is the relation between the property that two polynomials 
are or not co-prime and the property that they have or do not have common factors. In 
the case of polynomials over a Grassmann algebra there are three possibilities: (i) two 
polynomials are co-prime and they do not have a common factor, (ii) two polynomials are 
not co-prime and they have a maximum common divisor that can be calculated in the usual 
way using the Euclidean algorithm. Contrary to the standard case of polynomials over the 
complex numbers, where only these two alternatives are found, we have in OUT case a thud 
possibility: (iii) two polynomials are not co-prime and nevertheless they do not have a 
common factor. It was precisely this case, when considered in OUT simple example (4.2) 
at the level of a(x) and d(x ) ,  which led to some unusual properties like and 6 (F and 
G) having two maximum common divisors none of which could be obtained by using the 
Euclidean algorithm. From our point of view, it is clear that these matters require further 
understanding. 

L F Urrutia and N Morales 
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Appendix 

We consider a Grassmann algebra A over the complex numbers C. Any element a E A 
is a sum of the body i2 E C plus the nilpotent element s(a) called the soul. The ring of 
polynomials over this Grassmann algebra is denoted by Ao[x] and consists of all polynomials 

where ab are even elements of the Grassmann algebra. The set of nilpotent elements of 
A&] is denoted by Q = s (Ao)[x] .  The Grassmann algebra A is generated by an infinite 
number of odd generators eA. Nevertheless, when dealing with an specific supermatrix we 
consider only superfunctions of the given supermatrix elements. These elements will have 
an expansion in terms of the basis It"}, which is not relevant for OUT purposes [16]. 

Here we collect some basic results of [13] which we have used in this work. As far 
as possible we follow the notation and conventions of this reference and also we use their 
numeration for the respective lemmas and corollaries. 

?k.o polynomials S and T in A&] are CO-prime if the ideal generated by S and T is 
the whole ring A&]. 

Lemma 3.4. Let S, T, S I ,  TI in & [ X I  and suppose .? = 31, = ?I with S and T being 
co-prime. If ST = SITI then SI = (1 + R)S and TI = (1/(1 + R))T with R E Q. If 
moreover S and S I  are monic, then S = SI and T = TI. 
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Let S and T be co-prime monic polynomials in h o [ x ]  and let R be 
Then there exist RI and RZ in Q such that 

Corollary 3.8. 
in 4 such that deg(R) < deg(ST). 
ST + R = (S + R1)(T + Rz), witti deg(R1) < deg(S) and deg(R2) < deg(T). 
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